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Highlights  Abstract  

▪ Novel formulas for the flange-roller end 

contact in the cylindrical roller bearings have 

been derived. 

▪ Roller-raceway contact pressures have been 

obtained assuming elastic half-space model. 

▪ The effect of different roller end-flange designs 

on fatigue life is investigated. 

▪ Roller bearing with toroidal roller end-toroidal 

flange design has been seen having highest life. 

 This paper performs the fatigue life analysis of the radial Cylindrical 

Roller Bearings (CRBs) with consideration of various roller end-flange 

shapes such as toroidal-toroidal, spherical-toroidal, and spherical-

conical. A novel formula for each flange contact deformation in 

cylindrical roller bearing with different roller end-flange geometry 

including toroidal geometry is developed. Inner ring misalignment angle 

and radial deflection results obtained from the present study are verified 

with numerical and experimental results from the literature. The results 

approach to that of literature when the flange is changed from toroidal 

geometry to conical geometry. Using formulas developed in the present 

study, the effect of various roller end-flange geometries on the bearing 

life is investigated for different external loadings. It is observed that the 

bearing life increases when the roller end and flange are changed to 

toroidal geometry. 
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1. Introduction 

In rolling bearing design, fatigue life has long been considered 

as a significant parameter [34]. For this reason, it is necessary 

to include all conceivable factors influencing bearing life when 

carrying out a more detailed fatigue life analysis. For the 

Cylindrical Roller Bearings (CRBs), the moment load, which 

causes ring misalignment, and the axial load exerted along the 

bearing's ring axis can be counted as the major external loading 

factors reducing the fatigue life. Besides the loading factors, the 

CRBs’ performance is heavily influenced by the geometrical 

factors such as roller profile, internal bearing clearance, roller 

end-flange construction.  

A moment load or a misaligned bearing ring and a bearing 

axial load (for NJ/NUP-type CRBs) can cause the roller to tilt 

and to occur non-continuous roller-race contact pressures, 

hence can affect the bearing life. Numerous studies have been 

conducted on the effect of external load conditions on the 

fatigue life of the roller bearings [3, 6, 10, 16, 21, 33, 34, 36]. 

The effect of ring misalignment on the fatigue life can be seen 

particularly in these studies. There are also many studies about 

the effect of roller profile (crowning) on the CRBs’ fatigue life 

[25, 26, 29, 37]. Roller profile is a geometrical factor and 

nonuniform pressure occurs when this geometrical factor is not 
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proper. Internal bearing clearance is another design 

(geometrical) factor that affects the bearing internal load 

distributions, hence the bearing life. Its effect on the bearing life 

has been a matter of study by some researchers [7, 27, 39]. 

Yet another geometrical parameter determining roller 

bearing performance is the roller end-flange geometry design. 

Many researchers focused on the effect of roller end-flange 

shape on the lubrication and on the bearing axial load carrying 

capacity. Some of them claimed, for the cylindrical roller 

bearing, an optimum roller end-flange construction (e.g., 

spherical-conical, spherical-spherical, toroidal-conical, 

toroidal-spherical) aiming to enhance axial load capacity and to 

prevent edge loading between the flange-roller end [2, 13, 30]. 

Some of them presented the results related to the axial load 

carrying capacity of the CRBs having spherical roller end-

conical flange construction [4, 17, 23]. The effect of roller end-

flange geometry on the tapered roller bearing performance in 

terms of lubrication was addressed in the literature [14, 15, 40]. 

The effect of roller end-flange geometry of the CRB under 

different axial loads on its lubrication condition was studied in 

the papers [18, 20]. Li and Wen [20] took two different roller 

end-flange shapes as conical-conical and spherical-conical into 

consideration and they stated that the flange angle plays  

a decisive role in the axial load carrying capacity of the CRB. 

Krzeminski-Freda and Warda [18] considered the spherical 

roller end-conical flange geometry, and studied the effect of 

flange angle on friction and lubricant film formation between 

roller end and flange under different axial loads. Additionally, 

Krzeminski-Freda and Warda [18] investigated roller tilt and 

skew angles depending on the flange angle. They indicated that 

the effect of the resulting skew angle due to the variation of the 

flange angle on the bearing performance may be negligible 

because of the small values of the flange angle. 

 Different from the studies mentioned above, there are also 

more up-to-date studies in the literature that incorporate roller 

end-flange design [5, 35, 38]. Wirsching et al. [38] investigated 

the effect of roller end-flange modifications of the tapered roller 

bearings (e.g. sphere-conical, sphere-toroidal, toroidal-toroidal) 

on the hydrodynamic pressure, lubricant gap, and friction 

coefficient.  Bayrak and Sagirli [5] investigated the effect of 

flange angle (β) on the fatigue life of the NUP-type CRB having 

spherical roller end and conical flange. They considered 

different external loading conditions and indicated that the 

effect of variation in β on the life is apparent under combined 

radial load and misaligned ring and combined radial and high 

axial load.  Wang et al. [35] include the effect of flange angle 

on the internal load distribution of the CRBs in their study, and 

evaluate it in terms of its effect on the fatigue life. As seen 

above, studies on the effect of roller end-flange construction on 

bearing internal load distribution and fatigue life are limited. 

Considering the fact that roller end-flange design has effect on 

roller tilt [5, 35], more comprehensive studies on the effect of 

roller end-flange design on bearing internal load distribution 

and bearing life should be brought to the literature. 

To the best of our knowledge, no studies exist in the 

literature investigating the effect of various roller end-flange 

pair geometries (e.g. the pairs of toroidal- toroidal, toroidal -

conical, and spherical-conical) on the fatigue life of CRBs. In 

this study, fatigue analysis of a CRB is carried out considering 

different types of roller end-flange pair design. The effect of the 

roller end-flange pairs such as toroidal- toroidal, toroidal-

conical, and spherical-conical on the bearing life under different 

external loads is investigated. While some approaches and 

formulas for the deformation in the spherical roller end-conical 

flange contact exist in the literature [3, 5, 11, 16, 18, 22, 24], no 

flange deformation formulations was derived in the literature to 

be used for CRBs having toroidal roller end-toroidal flange 

geometry. In the current study, a new formula is derived for 

toroidal roller end-toroidal flange geometry, which is a function 

of various bearing external loads. Since four flanges exist in 

NUP-type CRB, which is studied in the present work, four novel 

formulas of flange-roller end contact deformation (or 

interpenetration) exist. With this new formula, flange 

deformations for different roller end-flange geometries such as 

spherical-conical, toroidal-conical, spherical-toroidal can also 

be simulated. Bearing internal load distribution are obtained 

using the slicing method. Contact pressures between rollers and 

races for the ISO life calculation [8] are calculated by elastic 

half-space method. Using the Matlab software, a code that can 

compute the bearing fatigue life versus given various inputs 

(e.g. different roller end-flange designs, flange angle, clearance, 

roller profile, and various external loading) has been developed. 

The calculations in the current study have been carried out by 

assuming dry contact in elastic limits, pure rolling, and non-
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conformal contacts; friction, roller skewing, and structural 

deformation of the rings are deemed negligible. 

2. Determination of bearing load distribution 

CRBs having flanges on both the inner and outer rings such as 

NUP, NJ, NH, and NF types can also carry some degree of axial 

load besides high radial loads.  Additionally, if a moment load 

causing the ring to misalign is applied to the ring, obtaining 

roller race contact loads may become much more complicated 

due to the roller end-flange interactions.  In this work, A CRB 

of the NUP type is used, and the approach in de Mull, Vree, and 

Maas [24] is adopted to calculate roller-race contact loads.  

Inner ring displacement vector ({δ}T={δy, δx, γ}) and the 

load vector ({F}T={Fy, Fx, M}) vectors can be seen in Fig. 1. To 

calculate the displacement vector of the inner ring ({u}T={ur, 

ux, θ})  which is on the “inner-ring cross-section reference point 

(P)” (called like that in [24]), inner ring displacement vector 

{δ}, which is on the point “O”, has to be multiplied by  

a transformation matrix {Rφ}[5, 24] :  

{𝑢} = [𝑅𝜑]{𝛿}   (1) 

[𝑅𝜑] = [

𝑐𝑜𝑠 𝜑 0 0
0 1 −𝑟𝑝 𝑐𝑜𝑠 𝜑

0 0 𝑐𝑜𝑠 𝜑
] (2) 

where rp is the bearing pitch (mean) radius, angle φ is the 

angular position of each roller relative to the reference roller. 

 

Fig. 1. Inner ring displacement {δ} and load {F} vectors, and 

the displacement vectors {u}, {v}. 

In Fig. 1, vector of {v}T={vr, vx, ψ} is the displacement 

vector of the roller and is formed by the effect of the vector {u}.  

While there is a single displacement (δ) and load (F) vector of 

the inner ring, the vectors {u} and {v} are multiple as there is a 

cross-section reference point (P) at each roller position.  

2.1. Roller-raceway contact loads 

The contact loads between rollers and raceways are calculated 

by using the slicing method. The contact line is sliced into  

a sufficient number of slices and the contact loads and moments 

(Qi, Qo, Ti, To) are obtained by summing the loads on each slice 

(qki, qko), where the subscripts i, o, k denote inner race, outer 

race, and the k-th slice, respectively (Fig. 2). Formulations given 

in [24] are used to calculate the roller-race contact loads. 

 

Fig. 2. Contact loads on a roller. 

The contact load per unit length qk for both inner and outer 

race can be obtained as follows [24]: 

𝑞𝑘 = 𝑐𝛿𝑘
1.11    (3) 

where the contact deformation on the k-th slice is represented 

by “δk“. The contact constant “c” was given in [3] as follows: 

𝑐 =
𝜋𝐸′𝑙𝑒

(7.358𝑙𝑒)
1.11   (4) 

where le, is effective contact length.  Eʹ is equivalent Young’s 

modulus and is equal to Eʹ=E/(1-ν2) for the case of the 

contacting bodies being the same material, where ν is the 

Poisson’s ratio. Contact deformation on the roller-inner race 

(δki) and roller-outer race (δko) are calculated as follows [24]:  

𝛿𝑘𝑖 = 𝑢𝑟 − 𝑣𝑟 + (𝜃 − 𝜓) × 𝑙𝑘 − ℎ𝑘 − 𝑃𝑑/4 (5) 

𝛿𝑘𝑜 = 𝑣𝑟 + 𝜓 × 𝑙𝑘 − ℎ𝑘 − 𝑃𝑑/4  (6) 

where “lk” stands for axial coordinate of each roller with respect 

to the roller center “P” (Fig. 2). “Pd” is internal radial clearance 

and “hk” is the crown drop at the k-th slice. Considering the 

outer ring is fixed, (ur-vr) and vr in Eqs. (5) and (6) represent the 
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deformations (or interpenetration) caused by translational 

motion of the roller and the rings in the local "r" direction. (θ-

ψ) and ψ in Eqs. (5) and (6) respectively denote the relative 

angular displacements between the roller and the rings in local 

angular direction (Fig. 1). Logarithmic profile (hk) given in the 

literature [7, 6, 19, 36, 37] is used in this work: 

ℎ𝑘(𝑥) = 1.44 × 10
−4𝐷 (

ℎ𝑚
ℎ𝐿
) 𝑙𝑛

1

1 + 𝑒−𝑔𝐾 − (2𝑥/𝑙𝑒)
2𝜀𝐾

 

𝑔𝐾 = 4.66 − 𝑙𝑛
𝐷

𝑙𝑒
 (7) 

where “D” and “x” is the roller diameter and the axial coordinate 

of the roller-based roller center. The correction parameters 

hm/hL=3, εK=3 was employed in the literature to ensure that the 

rollers and races have the maximum contact capacity possible 

[36].  Contact loads “Q” and moments “T” is obtained by using 

all the Eqs. above [24]: 

𝑄 = ∑ 𝑞𝑘Δ𝑙𝑘
𝑛𝑠
𝑘=1    (8) 

𝑇 = ∑ 𝑞𝑘𝑙𝑘Δ𝑙𝑘
𝑛𝑠
𝑘=1    (9) 

where “Δlk“ is the slice width at k-th slice.  

2.2. The new formulas for the contact between toroidal 

roller end and toroidal flange  

Assuming Hertzian point contact model, the contact load 

between roller end and flange can be calculated as follows [24]: 

𝑄𝑓 = 𝑐𝑓𝛿𝑓
3/2

   (10) 

where cf and δf are flange contact constant and flange contact 

deformation respectively. 

As mentioned before, a formulation of the deformation 

between toroidal roller end and toroidal flange for roller 

bearings under different external loads does not exist in the 

literature. Therefore, a new formulation is derived in the present 

study with the help of 2D drawings. Assuming the radial (Pd) 

and axial (Δf) clearances exist, the initial positions of the roller 

and the rings before loading are shown in Fig. 3-a. Centers of 

each flange’s curvature radius (fil, fiR, fol, foR) and of each roller 

end curvature radius (Oil, OiR, Ool, OoR) can be seen in Fig. 3-a, 

where the subscripts i, o, l, R denote inner ring, outer ring, left 

side, right side. These are the centers of curvature radius in the 

drawing plane (plane “Ⅱ”). There is one more principal plane 

(plane “Ⅰ”) which is perpendicular to the drawing plane. These 

planes are showed more clearly in Fig. 4. Each flange has its 

own local coordinate system: (x', r') for inner ring left side 

flange, (x, r') for inner ring right side flange, (x', r) for outer ring 

left side flange and (x, r) for outer ring right side flange (Fig. 3-

a). When the inner ring and the roller move, which are the 

displacement vectors of the inner ring {u}T={ur, ux, θ} and  the 

roller {v}T={vr, vx, ψ} as mentioned before, curvature centers 

Oil, OiR, Ool, OoR, fil, fiR are displaced with respect to their own 

local coordinate systems (Fig. 3-b). When the initial and final 

positions of the centers of curvature are known, all the necessary 

parameters for the force and moment equilibrium Eqs. can be 

calculated. These necessary parameters are: Flange deformation 

δf, the distance between the roller center and the point where 

flange contact intersects the roller center line ζ, and the angle 

between flange contact line and the roller center line after 

loading μ. These parameters are shown in Fig. 3-b for the inner 

ring left side flange (δf-il, ζil, μil). The procedure for obtaining 

these parameters is detailed below.  

For the inner ring left side, the initial coordinate of the center 

of roller end curvature radius which is in the drawing plane, 

plane Ⅱ, Oil (x'1 r'1) is (Fig. 3-a): 

𝑥′1 = (𝑅𝑟𝑒І − 𝑅𝑟𝑒ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁  (11) 

𝑟′1 = (𝑅𝑟𝑒І − 𝑅𝑟𝑒ІІ) × 𝑠𝑖𝑛( 𝛽)   (12) 

where RreⅠ and RreⅡ are the curvature radii on plane Ⅰ which is 

perpendicular to drawing plane and plane Ⅱ which is drawing 

plane, β is the angle of inclined flange, ζ is the distance between 

roller center and center of RreⅠ ( Fig. 3-a). The parameters of β, 

RreⅠ, RreⅡ, ζ are equal for four flanges. Subscript “re” symbolize 

the roller element. With the help of a vector 𝐿𝑟𝑒 from the center 

of coordinate system to center of curvature radius RreⅡ (Fig. 3-

a), the final position of the curvature center can be found. At the 

initial position, the length of the vector |𝐿𝑟𝑒|  and its angle with 

the x'-axis αre are (Fig. 3-a): 

|𝐿𝑟𝑒| = √(𝑥′1)
2 + (𝑟′1)

2  (13) 

𝛼𝑟𝑒 = 𝑡𝑎𝑛
−1(𝑟′1/𝑥′1)   (14) 

In the similar way, for the inner ring left side, the initial 

coordinate of the center of flange curvature radius which is in 

plane Ⅱ, fil (x'2 r'2) is:  

𝑥′2 = (𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + Δ𝑓   (15) 

𝑟′2 = (𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4  (16) 

where the Δf and Pd are axial and radial clearances respectively 

(Fig. 3-a). The initial length of the vector |𝐿𝑓| of the flange 

curvature and its angle with the x'-axis αf are (Fig. 3-a): 

|𝐿𝑓| = √(𝑥′2)
2 + (𝑟′2)

2  (17) 
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𝛼𝑓 = 𝑡𝑎𝑛
−1(𝑟′2/𝑥′2)   (18) 

The final positions of the curvature centers of roller end Oil 

(x'3, r'3) and flange fil (x'4, r'4) are dependent on the displacement 

vectors of the roller {v}T={vr, vx, ψ} and the inner ring {u}T={ur, 

ux, θ} respectively (Fig. 3-b):    

𝑥′3 = |𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 +𝜓) − 𝑣𝑥  (19) 

𝑟′3 = |𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 + 𝜓) − 𝑣𝑟 (20) 

𝑥′4 = |𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 + 𝜃) − 𝑢𝑥  (21) 

𝑟′4 = |𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 + 𝜃) − 𝑢𝑟  (22) 

The positive directions of {u} and {v} are shown in Fig. 3-

a. The final distance “L” between the centers of roller end and 

flange curvatures in plane Ⅱ (Fig. 3-b):    

𝐿 = √(𝑥′3 − 𝑥′4)
2 + (𝑟′3 − 𝑟′4)

2 (23) 

The inner ring left side flange deformation δf-il, which is one 

of the important parameters for the calculations, can be 

calculated with the help of the final distance L:  

𝛿𝑓−𝑖𝑙 = (𝑅𝑟𝑒ІІ + 𝑅𝑓 ІІ) − 𝐿  (24) 

where (RreⅡ+RfⅡ) is the distance between the curvature centers 

of roller end and flange in the initial contact position and can be 

seen more clear in Fig. 4. Another important parameter, as 

mentioned before, is the angle between flange contact line and 

the roller center line after loading μ:  

𝜇𝑖𝑙 = 𝑡𝑎𝑛
−1 (

𝑟′3−𝑟′4

𝑥′3−𝑥′4
) − 𝜓  (25) 

Yet another essential parameter is the distance between the 

roller center and the point where flange contact intersects the 

roller center line ζil after loading. The distance of ζil can be 

calculated by transferring the final coordinate points of the 

flange fil (x'4, r'4) (or of the roller) to another local coordinate 

system of (x'', r'') (see Fig. 3-b). One can see this local 

coordinate system (x'', r'') in Fig. 3-b.   

[
𝑥′′4
𝑟′′4

] = [
𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜓)

− 𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓)
] [
𝑥′4 + 𝑣𝑥
𝑟′4 + 𝑣𝑟

] (26) 

Now that the angle μil and the transferred coordinates x''4, 

r''4 are known, ζil can be calculated: 

휁𝑖𝑙 = −(𝑥′′4 −
𝑟′′4

𝑡𝑎𝑛(𝜇𝑖𝑙)
)  (27) 

The negative sign outside the parentheses in Eq. (27) is for 

the conversion of ζil to follow the sign convention in the roller 

moment equilibrium equation, which the clockwise is positive 

for the roller in Fig. 3.   

If Fig. 3-b is taken as an example, the sign of the ζil will be 

minus with reference to local coordinate system (x'', r''). 

However, ζil must have positive sign according since the 

moment applied by the inner ring left side flange load around 

the roller center is expected to be clockwise. The new Eqs. (24), 

(25), and (27) are derived for inner ring left side flange. Their 

expanded forms exist in Appendix as Eqs. (A1), (A5), and (A9). 

For other flanges, deformations δf-iR, δf-ol, δf-oR, angles μf-iR, μf-ol, 

μf-oR, and the distances ζf-iR, ζf-ol, ζf-oR can be derived by the same 

manner and not described for simplicity's purpose of the paper. 

They are also available in Appendix. 

 

a)    

          

b) 

Fig. 3. The positions of the curvature centers of the roller end 

and flange (a) before loading (b) after loading. 

2.3. Obtaining the curvature radii of the roller end and 

flange 

In Fig. 4, the initial contact position of the roller end and flange 

is shown and the curvature radii in plane Ⅰ and plane Ⅱ can be 

seen more clear.
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Fig. 4. The initial contact position of the roller end-flange geometry and their radii of curvatures.

In this study, RreⅠ is depended on the angle of inclined flange 

β. The relationship between RreⅠ and β is stated as follows [18]:   

𝑅𝑟𝑒 І = (𝐷/2 − 𝑒𝑓)/ 𝑠𝑖𝑛 𝛽  (28) 

where D is the roller diameter and ef is the contact point’s radial 

distance from the raceway (see Fig. 4).  

𝑒𝑓 = (1/2)ℎ𝑓𝑒 + (ℎ𝑓 − ℎ𝑓𝑒)  (29) 

where hfe is the effective flange height, the difference between 

the total flange height hf and the height of the undercut. The 

height of the contact point ef is kept in the middle of hfe as can 

be seen in Eq. (29). The curvature radii in plane Ⅰ for the inner 

and outer ring flanges, RfⅠ: 

𝑅𝑓І = ((𝑑𝑚/2)/ 𝑠𝑖𝑛 𝛽) − 𝑅𝑟𝑒І  𝑓𝑜𝑟 𝑖𝑛𝑛𝑒𝑟 𝑟𝑖𝑛𝑔 𝑓𝑙𝑎𝑛𝑔𝑒     

(30) 

𝑅𝑓І = ((𝑑𝑚/2)/ 𝑠𝑖𝑛 𝛽) + 𝑅𝑟𝑒І  𝑓𝑜𝑟 𝑜𝑢𝑡𝑒𝑟 𝑟𝑖𝑛𝑔 𝑓𝑙𝑎𝑛𝑔𝑒     

(31) 

The curvature radii in plane Ⅱ (RfⅡ,RreⅡ) are obtained as 

follows: 

𝑅𝑟𝑒ІІ = 𝑅𝑟𝑒І × 𝑘𝑟𝑒   (32) 

𝑅𝑓ІІ = 𝑅𝑓І × 𝑘𝑓   (33) 

where kre and kf  are the ratios of the curvature radius in plane Ⅱ 

to that in plane Ⅰ for the roller element and flange respectively. 

In this study, RfⅠ of inner ring flange (Eq. (30)) is used also for 

outer ring flange when calculating RfⅡ, which means RfⅡ is 

assumed to be equal for inner and outer ring flanges. 

2.4. Obtaining of the flange contact constant cf 

After the flange contact deformation formulation has been 

derived δf, the contact constant cf must also be calculated in 

order to calculate the flange load in Eq. (10). Expanding Eq. 

(10) : 

𝑄𝑓 = [F((
4.5

𝜀

1

𝑅
) (

1

𝜋𝜅𝐸′
)
2

)

1/3

]

−3/2

𝛿𝑓
3/2

  (34) 

Eq. (34) was given in the literature [9] for the Hertzian point 

contact models. Considering flange contact formula, 

Qf=cf×δf
3/2, the term next to the δf

3/2 in Eq. (34) corresponds to 

cf. Eʹ is equivalent Young’s modulus, 1/R is the curvature sum 

of the flange and roller end with respect to two principal planes 

( plane Ⅰ and plane Ⅱ), which can be obtained using RfⅠ, RfⅡ, RreⅠ, 

RreⅡ. F and ε are the elliptic integrals of first and second kind, κ 

is the ellipticity. Approximate values of F, ε and κ were given in 

[9]:  

𝜅 = (𝑅𝑟𝑎𝑡𝑖𝑜)
2/𝜋   (35) 

F = 𝜋/2 + (𝜋/2 − 1) 𝑙𝑛 𝑅𝑟𝑎𝑡𝑖𝑜  (36) 

휀 = 1 + (𝜋/2 − 1)/𝑅𝑟𝑎𝑡𝑖𝑜  (37) 

where Rratio is the ratio of effective radius of curvature in plane 

Ⅱ to that in planeⅠ, Rratio=RⅡ/ RⅠ.  Effective radii of curvature in 

plane Ⅱ and plane Ⅰ can be calculated for roller end-flange 

contact as: 

1/𝑅ІІ = 1/𝑅𝑟𝑒ІІ + 1/𝑅𝑓ІІ ,    1/𝑅І = 1/𝑅𝑟𝑒І + 1/𝑅𝑓І     (38) 

2.5. Roller and bearing equilibrium equations  

Force and moment equilibrium equations on a roller can be 

written as: 

𝑄𝑖 − 𝑄𝑜 + (𝑄𝑓−𝑖𝑙 + 𝑄𝑓−𝑖𝑅) × 𝑠𝑖𝑛 𝛽

− (𝑄𝑓−𝑜𝑙 + 𝑄𝑓−𝑜𝑅) × 𝑠𝑖𝑛 𝛽 =  0 

(𝑄𝑓−𝑖𝑙 + 𝑄𝑓−𝑜𝑙) × 𝑐𝑜𝑠 𝛽 − (𝑄𝑓−𝑖𝑅 + 𝑄𝑓−𝑜𝑅) × 𝑐𝑜𝑠 𝛽 = 0 

𝑇𝑖 − 𝑇𝑜 + (
(𝑄𝑓−𝑖𝑙 × 𝑠𝑖𝑛( 𝜇𝑖𝑙) × 휁𝑖𝑙)

+(𝑄𝑓−𝑜𝑅 × 𝑠𝑖𝑛( 𝜇𝑜𝑅) × 휁𝑜𝑅)
) −

(
(𝑄𝑓−𝑖𝑅 × 𝑠𝑖𝑛( 𝜇𝑖𝑅) × 휁𝑖𝑅)

+(𝑄𝑓−𝑜𝑙 × 𝑠𝑖𝑛( 𝜇𝑜𝑙) × 휁𝑜𝑙)
) = 0  (39) 
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First and second are the force equilibriums in radial and 

axial directions. Third one is the moment equilibrium equation 

on the roller. As in [24],  the angle β which is the angle before 

loading is used in force equilibrium instead of the angle μ which 

is the angle after loading since its effect on the force equilibrium 

is small. The whole force (Q) and moments (T) on the roller can 

be also seen in Fig. 2. Definitions of all subscripts and the 

parameters of “μ” and “ζ” is made in the previous section. The 

non-linear Eqs. (39) are solved simultaneously for each roller to 

calculate the roller moves {v}T= {vr, vx, ψ} by using the 

Newton-Raphson iterative method. Roller-race (Qi, Qo) and 

roller end-flange (Qf) can be calculated after solving Eqs. (39).  

The bearing equilibrium equations are derived for the inner 

ring and can be expressed as: 

{𝐹} + ∑ [𝑅𝜑]𝑇{𝑄𝑏}𝑗
𝑍
𝑗=1 = 0  (40) 

where, {F}T={Fy, Fx, M}, is the external load vector. “Z” is the 

total number of rollers, {Qb}j is the inner ring contact load at the 

j-th roller position. Inner ring contact load {Qb}j can be 

expressed as: 

{𝑄𝑏}𝑗 =

{

−𝑄𝑖𝑗 − (𝑄𝑓−𝑖𝑙𝑗 + 𝑄𝑓−𝑖𝑅𝑗) × 𝑠𝑖𝑛 𝜇0
(−𝑄𝑓−𝑖𝑙𝑗 + 𝑄𝑓−𝑖𝑅𝑗) × 𝑐𝑜𝑠 𝜇0

−𝑇𝑖𝑗 − (𝑄𝑓−𝑖𝑙𝑗 × 𝑠𝑖𝑛( 𝜇𝑖𝑙𝑗) × 휁) + (𝑄𝑓−𝑖𝑅𝑗 × 𝑠𝑖𝑛( 𝜇𝑖𝑅𝑗) × 휁)

}(41) 

After solving Eqs. (39) by Newton-Raphson method, and 

obtaining all the contact loads, the bearing equilibrium 

equations (40) is solved by the same method to calculate inner 

ring displacements {δ}T={δy, δx, γ}. 

3. Calculation of the contact pressures and fatigue life 

Contact pressures between rollers and races are calculated by 

the elastic half-space method. Elastic deflection on the surface 

at any point due to a point load can be obtained by Boussinesq 

force-elastic deflection equation. The Boussinesq equation for a 

point load on the surface can be expressed as [32]: 

𝑤 =
𝐹(1−𝜈2)

𝜋𝐸𝑟
    (42) 

With this formula, the amount of elastic deflection “w” at a 

point on the surface that is distance “r” from the point load “F” 

can be calculated. “E” and “ν” are the Young’s modulus and 

Poisson’s ratio, respectively. As for contact area, infinite 

number of point loads arise, from which the contact pressure 

term shows up. Hence, Eq. (42) turns into integral term. With 

the help of Boussinesq force-elastic deflection equation, the 

following equation can be written for the non-conforming 

surfaces in contact [1, 34]: 

𝐾 ∫
𝑝(𝑥′,𝑦′)𝑑𝑥′𝑑𝑦′

√(𝑥−𝑥′)2+(𝑦−𝑦′)2Ω
+ 𝑧1 + 𝑧2 − (𝑤0 + 𝛼 × 𝑥) = 0       (43) 

The integral term in Eq. (43) comes from Boussinesq 

equation (Eq. (42)) and represents the elastic deflection w(x,y) 

at the point (x,y) generated by the normal pressure p(x’,y’) at 

point (x’,y’).  “Ω” is denotes the region covered by the contact 

pressure, “z1” and “z2” are the profile functions of the contacting 

body bodies, “w0” and “α” represent, respectively, bodies’ 

relative translational and angular motions, “K” is the elastic 

parameter, and equals to K=2×(1-ν2)/(π×E) for two bodies in 

contact that are made of the same material. 

To solve Eq (43), the contact area can be discretized into 

small rectangular segments over which the constant pressure 

exist (Fig. 5).  

 

Fig. 5. Discredited contact area. 

In the current study, discretization is done by using the 

rectangular segments of different sizes, the smaller rectangular 

segments are used at the roller ends to compute possible peak 

pressures more precisely and minimize computational effort 

(Fig. 5). After discretization has been applied to the integral 

term in Eq. (43), updated form of Eq. (43) is: 

∑ 𝑝𝑗𝑓𝑖𝑗
𝑛
𝑗=1 + 𝑧1𝑖 + 𝑧2𝑖 − (𝑤0 + 𝛼 × 𝑥𝑖) = 0; 𝑖 = 1,2,3, . . . , 𝑛   (44) 

The literature defines “fij” as the influence coefficient that is 

the elastic deflection on the i-th segment due to the unit pressure 

on the j-th segment (pj), and its formula can be found in the 

studies [1, 12]. One more equation is needed to obtain the 

contact pressures generated by the applied radial force: 

𝑄 − ∑ 𝐴𝑗𝑝𝑗
𝑛
𝑗=1 = 0; 𝑝𝑗 > 0  (45) 

Eqs. (44) and (45) are solved simultaneously to calculate the 

pressures on each segment (pj), bodies’ relative translational 
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motion (w0), and actual contact area by using the Newton-

Raphson method. The studies [1, 33, 34] contain the detailed 

process for solving Eqs. (44)-(45). Additionally, contact 

pressure calculation process in the present study is given in  

Fig. 6. 

 

Fig. 6. Contact pressure calculation process.  

To calculate the fatigue life of the CRB, the procedure in 

ISO [8] is employed in the current study. Assuming a 0.9 

probability of survival, fatigue life of the CRB can be predicted 

as follows [8]: 

𝐿10𝑟 = (∑ [(
𝑞𝑐,𝑖𝑘

𝑞𝑒,𝑖𝑘
)
−4,5

+ (
𝑞𝑐,𝑜𝑘

𝑞𝑒,𝑜𝑘
)
−4,5

]
𝑛𝑠
𝑘=1 )

−
8

9

     (46) 

where ns corresponds to the number of segments in the contact 

area's middle strip. Subscripts of k, i, o symbolize k-th segment 

at the middle strip, inner ring, outer ring, respectively. qc and qe 

are, respectively, the basic dynamic load rating and dynamic 

equivalent load of each segment at the middle strip of the 

contact (on the x-axis in Fig. 5).  The parameter of qc can be 

calculated as [8, 16]: 

𝑞𝑐,𝑚𝑘 = 𝑄𝑐,𝑚 (
Δ𝑙

𝑙𝑒
)

7

9
   (47) 

where m is the inner race m=i or the outer race m=o contact. 

Subscript of k represents the k-th segment and Δl is the k-th 

segment's length in the middle strip. Qc is the basic dynamic 

capacity of the race and is stated as [8]: 

𝑄𝑐,𝑚 =
1

𝜆𝑣

𝐶

𝐶𝑚𝑍
[1 + (1.038 (

1−𝜒

1+𝜒
)

143

108
)

±
9

2

]

2

9

    (48) 

where m denotes the inner ring m=i for upper sign, the outer 

ring m=o for lower sign. For inner ring Cm=Ci=0.378, for outer 

ring Cm=Co=0.364. Z is the number of rollers. The 

multiplication of λv is equal to 0.83, and “χ” is equal to (D/dm) 

for the CRBs for the CRBs [8]. C is the basic dynamic radial 

load rating, and as follow for the single row CRBs: 

𝐶 = 𝑏𝑚𝑓𝑐𝑙𝑒

3

4𝑍
7

9𝐷
29

27   (49) 

where bm=1.1 for the present-day bearing steel. fc is a parameter 

depending on the bearing geometry and material, and its 

formula can be found in ISO [28].  

The dynamic equivalent load of each segment at the middle 

strip for each race (qe,i, qe,o) [8]: 

𝑞𝑒,𝑚𝑘 = (
1

𝑍
∑ ((

𝑝𝑚,𝑗𝑘

271
)
2

⋅ 𝐷 ⋅ (1 ∓ 𝜒) ⋅ Δ𝑙)
𝑡𝑚

𝑍
𝑗=1 )

1

𝑡𝑚

     (50) 

where the subscript m represents the inner race m=i for upper 

sign, the outer race m=o for lower sign. For the inner race 

tm=ti=4, for the outer race tm=to=4.5. pm,jk denotes the contact 

pressures on the inner race pi,jk and outer race po,jk in the location 

of the j-th roller and at the k-th segments (at the middle strip).  

4. Results and discussions 

4.1. Model verification 

The approach in the reference study [24] is adopted in the 

present study to calculate bearing internal load distribution. 

However, in the current study, a new roller end-flange contact 

formulation is derived since NUP-type CRB having the toroidal 

roller end and the toroidal flange is studied. To verify this new 

formulation, numerical results from the present study and from 

the study [24] are compared. Experimental results in [24] are 

also compared with the results of current study. In [24], roller 

end-flange construction is spherical-conical (Fig. 7). 

The given parameters in Fig. 7 are flange angle β=1°57', 

bearing pitch diameter dm=72.5 mm, radial clearance Pd=0.02 

mm, roller diameter ØD=14 mm, roller end sphere radius 

Rs=175 mm, effective roller length le=13.72, and Δa= 0.0015. In 

Fig. 7, the roller is partially crowned; straight part ls=8.4 and arc 

radius R=604 mm. In the reference study [24], NUP-type CRB 

was studied numerically and experimentally. In the 
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experimental test rig, hydraulic radial force (Fy) between 0 and 

20 [kN], and external moments (Mext) of -8530, 0, and 4440 

[Nmm] was applied to the bearing outer ring. 

 

Fig. 7. The CRB geometry studied in Ref. [24]. 

Furthermore, the radial load was applied eccentrically e=0.2 

[mm] and hence additional moment occurred (See Eq. (51)). 

𝑀 = 𝑀𝑒𝑥𝑡 − (𝐹𝑦 −𝑊) × 0.2  (51) 

where M is total moment applied and W is the static weight 

force and W=600 [N]. Because the test results of [24] had a low 

hysteresis, two curves exist for each test (Fig.8). 

The outputs of inner ring misalignment angle γ and inner ring 

deflection δy are shown versus the inputs of different Mext and 

Fy in Fig. 8(a) and Fig. 8(b), respectively. Triangles indicate the 

numerical results and dots indicate the experimental results of 

the reference study [24]. Different type of lines indicates the 

numerical results of the present study.  

As mentioned above, conical flange-spherical roller end contact 

was assumed in the reference study [24]. Thus, in order to 

compare the results of the current study with those of the Ref. 

[24], the ratio of RfⅡ/ RfⅠ is increased from 0.01 to 100 to simulate 

conical flange (RfⅡ= ∞), and the ratio of RreⅡ/ RreⅠ is set as 1 to 

simulate spherical roller end. 

As can be seen in Fig. 8-a, as RfⅡ/ RfⅠ increases from 0.01 to 100, 

the numerical results of γ of the current study approach enough 

to numerical and experimental results of [24]. It can be deduced 

that the value of RfⅡ/ RfⅠ=100 corresponds to RfⅡ≌ ∞ since the 

results overlap for the values of RfⅡ/ RfⅠ=1 and RfⅡ/ RfⅠ=100 (Fig. 

8-a).  

 

 

 

Fig. 8. Comparison of the results with those of the Ref. study [24] (a) ring misalignment angle γ, (b) ring deflection δy

                    Numerical Results [24] 

                  Experimental Results [24]   

                               

Numerical Results Present Study 
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Ring deflection (δy) are identical for different RfⅡ/ RfⅠ and for 

three external moments (Fig. 8-b). The insignificant differences 

between the results can be attributed to the difficulties 

encountered in replicating the graph with low resolution used in 

the work of [24]. 

The main verification of the present study is above 

mentioned numerical and experimental verification. 

Additionally, the novel formulas derived in the present study are 

compared and verified with the results measured in CAD 

drawings (See Appendix). This CAD verification is only a work 

of comparing formulas with their geometric equivalents. 

4.2 Fatigue life results of the CRB under different external 

loads 

In the current study, the effect of the ratios RreⅡ/ RreⅠ and RfⅡ/ RfⅠ 

on the fatigue life of a NUP type radial CRB is investigated for 

different external loads. In this work, radial load (Fy) and inner 

ring misalignment (γ) are considered as the external loads.  

The combined loading Fy-γ is highly possible considering  

a shaft system on which a radial load is applied at the middle, 

and which is supported by a pair of CRBs. Table 1 contains the 

geometrical parameters and basic dynamic load rating (C) of the 

bearing. Some of the parameters listed in Table 1 are given in 

Refs. [6, 31]. As done in [24], the axial clearance (2×Δf) is kept 

minimal to investigate the influence of flange loads on the 

bearing load distribution. As mentioned before, RreⅠ and RfⅠ in 

Table 1 are dependent dimensions and are calculated according 

to Eqs. (28) and (30), respectively.

Table 1. The geometrical parameters and the dynamic load rating of the NUP-213 type CRB.  

Parameter Value 

Pitch diameter, dm [mm] 93.5 

Roller mean diameter, D [mm] 15 

Roller effective length, le [mm] 14 

Total number of the rollers, Z 16 

Total radial clearance, Pd  [mm] 0.038 

Total axial clearance, 2×Δf  [mm] 0.003 

Flange angle, β  [°] 0.5 

Roller end curvature radius on plane Ⅰ (RreⅠ) [mm] 661.7 

Flange curvature radius of inner ring on plane Ⅰ (RfⅠ) [mm] 4695.4 

Dynamic load rating, C [kN] 122 

 Total flange height, hf [mm] 2.95 

 

  

(a) 
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Fig. 9. Predicted fatigue life of the CRB for different ratios of RreⅡ/ RreⅠ and RfⅡ/RfⅠ, and different misalignment angle of the inner ring 

(γ)   (a) Fr=0.3C (b) Fr=0.1C.

Fig. 9 shows the bearing life results (L10) against three 

variables: The ratios RreⅡ/RreⅠ, RfⅡ/RfⅠ, and inner ring 

misalignment angle (γ). For ease of perception, bearing radial 

load (Fy) is now referred to as "Fr". Fig. 9-a and b illustrate the 

fatigue life results for different radial loads Fr=0.3C=36.6 kN 

and Fr=0.1C=12.2 kN. As can be seen in Fig. 9, bearing life 

increases with decreasing ratios RreⅡ/RreⅠ and RfⅡ/RfⅠ. It is clear 

in Fig. 9 that the effect of the ratio RreⅡ/RreⅠ on the life is more 

dominant when RfⅡ/RfⅠ=100. It is worth reminding in here that 

RfⅡ/RfⅠ=100 corresponds to RfⅡ≌∞, which means inclined flat 

flange (conical flange). The main reason for the increase in the 

bearing life with the decrease of RreⅡ/RreⅠ and RfⅡ/RfⅠ is the 

decrease in contact stiffness cf and thus decrease in flange loads 

Qf.  

In Fig. 10, flange contact loads are shown for each roller in 

the bearing having conical flange (RfⅡ/RfⅠ=100). Because of 

symmetry, nine rollers at 0-π diameter are given: Roller No. 1 

at azimuth angle φ=0˚ (radially maximum loaded roller) and 

Roller No. 9 at azimuth angle φ=180˚. Decrease in the whole 

flange loads with decreasing ratio RreⅡ/RreⅠ can be seen in Fig. 

10.  

Considering the formula of the flange load, Qf=cf×(δf)1.5, the 

main reason for the decrease in flange loads is that the flange 

contact constant (stiffness) cf also decreases versus RreⅡ/RreⅠ 

( Fig. 11-a). 

As can be seen in Fig. 11-a, as RreⅡ/RreⅠ decreases, the contact 

constant cf which is the function of curvature radii decreases to 

a limit. This decrease of cf (stiffness) reduces the flange loads 

(Fig. 10). When the flange loads decrease, the roller tilt ψ 

increases from a negative value to a positive limit (Fig. 11-b). 

Considering the sketch in Fig. 10-e, roller tilt is negative in that 

figure since the positive sign of the roller tilt is clockwise. When 

the roller tilt increases from negative to positive, 

interpenetration (deformation) of the roller and inner race 

decreases, hence the fatigue life increases to a limit (Fig. 9). 

Besides, as independent of the stiffness, since the decrease in 

RreⅡ also reduces the interpenetration (deformation) of bodies  

a little more, this geometric effect also contributes to the 

increase in fatigue life especially between RreⅡ/RreⅠ=1 and 0.1.  

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
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Fig. 10. Flange loads for all rollers in the bearing under Fr=0.3C and γ=4'  (a)-(b) inner ring left side and Right side flange loads Qf-il 

and Qf-iR (c)-(d) outer ring left side and Right side flange loads Qf-ol and Qf-oR (e) a sketch showing flange loads for Roller No. 1.

 

Fig. 11. (a) Variation of the flange contact constant (stiffness) of the inner ring versus RreⅡ/ RreⅠ and RfⅡ/RfⅠ (b) For Fr=0.3C and γ=4', 

the tilt angle ψ of the maximum loaded roller (Roller No. 1) versus RreⅡ/ RreⅠ and RfⅡ/RfⅠ. 
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5. Conclusions 

Considering the effect of roller end-flange design on bearing 

internal load distribution and thus on bearing life and the 

scarcity of studies on this subject, the objective of the current 

study is to investigate the effect of different roller end-flange 

designs on the bearing life. In the present study, a novel formula 

for the deformation of each flange-roller end contact in the 

roller bearings has been derived as in Section 2.2, and their 

expanded forms for the whole flanges are given in the 

Appendix, Eqs. (A1-A4). In addition to these, new equations 

have been also derived for the parameters (μ and ζ) required for 

force and moment equilibrium equations on each roller (Eqs. 

A5-A12). Thereby, it is possible to investigate the effect of 

different roller end-flange geometries on the bearing load 

distribution, and hence on the life, by employing the flange 

contact deformation formula derived in this study. Although the 

cylindrical roller bearing is the research object of this study, this 

formulation derived in the present work can be also used for the 

tapered roller bearings. In this context, the studies carried out 

and the main results are summarized below: 

(1) Different roller end-flange designs create different flange 

loads, hence affect the bearing internal load distribution. 

By considering this fact, the new formulas developed are 

validated by comparing the ring deflection and 

misalignment results of the present study with numerical 

and experimental results of [24]. The ratios RfⅡ/RfⅠ and 

RreⅡ/RreⅠ are adjusted to simulate the spherical roller end-

conical flange pair which is studied in [24].  

(2) By changing curvature radius ratios of flange (RfⅡ/RfⅠ) and 

the roller end (RreⅡ/RreⅠ), different flange-roller end designs 

(conical-spherical, toroidal-toroidal, toroidal-spherical) is 

obtained, and its effect on bearing load distribution and the 

fatigue life is investigated for combined load of Fr-γ. 

Fatigue life is calculated by using the method given in ISO 

[8].  

(3) Since the ratios RreⅡ/RreⅠ and RfⅡ/RfⅠ affect the bearing load 

distribution, they affect the bearing life as well. Bearing 

life increases to a limit when the ratios RreⅡ/RreⅠ and RfⅡ/RfⅠ 

decreases. The main reason of this effect is that flange 

contact constant (stiffness) decreases to limit with 

decreasing ratios RreⅡ/ RreⅠ and RfⅡ/RfⅠ. As the flange contact 

stiffness decreases, flange loads also decrease, which 

changes the roller tilt angle and increases the bearing life.  

(4) In other words, the bearing life increases when the roller 

end is changed from spherical to toroidal geometry and the 

flange is changed from conical to toroidal geometry. 

Therefore, it is recommended to design the roller end and 

flange as toroidal geometry in order to achieve the best 

result in terms of bearing life. 

(5) The effect of curvature radius ratio of roller end (RreⅡ/RreⅠ) 

on the predicted life is dominant when the flange has 

conical geometry (RfⅡ/RfⅠ=100≌∞). Similarly, the effect of 

the ratio of RfⅡ/RfⅠ on the life is dominant when the roller 

end is spherical geometry (RreⅡ/RreⅠ=1)
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Appendix A 

𝛿𝑓−𝑖𝑙 = (𝑅𝑟𝑒ІІ + 𝑅𝑓 ІІ) − √
[(|𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 + 𝜓) − 𝑣𝑥) − (|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 + 𝜃) − 𝑢𝑥)]

2

+[(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 + 𝜓) − 𝑣𝑟) − (|𝐿𝑓| × 𝑠𝑖𝑛(𝛼𝑓 + 𝜃) − 𝑢𝑟)]
2 (A1) 

𝛿𝑓−𝑖𝑅 = (𝑅𝑟𝑒ІІ + 𝑅𝑓 ІІ) − √
[(|𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 − 𝜓) + 𝑣𝑥) − (|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 − 𝜃) + 𝑢𝑥)]

2

+[(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 − 𝜓) − 𝑣𝑟) − (|𝐿𝑓| × 𝑠𝑖𝑛(𝛼𝑓 − 𝜃) − 𝑢𝑟)]
2 (A2) 

𝛿𝑓−𝑜𝑙 = (𝑅𝑟𝑒ІІ + 𝑅𝑓 ІІ) − √
[(|𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 − 𝜓) − 𝑣𝑥) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓)]

2

+ [(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 + 𝜓) − 𝑣𝑟) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4)]
2 (A3) 

𝛿𝑓−𝑜𝑅 = (𝑅𝑟𝑒ІІ + 𝑅𝑓 ІІ) − √
[(|𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 + 𝜓) + 𝑣𝑥) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓)]

2

+ [(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 + 𝜓) + 𝑣𝑟) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4)]
2 (A4) 

𝜇𝑖𝑙 = 𝑡𝑎𝑛
−1 (

[(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 +𝜓) − 𝑣𝑟) − (|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 + 𝜃) − 𝑢𝑟)]

[(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 + 𝜓) − 𝑣𝑥) − (|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 + 𝜃) − 𝑢𝑥)]
) − 𝜓 (A5) 

𝜇𝑖𝑅 = 𝑡𝑎𝑛
−1 (

[(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 − 𝜓) − 𝑣𝑟) − (|𝐿𝑓| × 𝑠𝑖𝑛(𝛼𝑓 − 𝜃) − 𝑢𝑟)]

[(|𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 −𝜓) + 𝑣𝑥) − (|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 − 𝜃) + 𝑢𝑥)]
) + 𝜓 (A6) 

𝜇𝑜𝑙 = 𝑡𝑎𝑛
−1(

[(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 − 𝜓) + 𝑣𝑟) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4)]

[(|𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 − 𝜓) + 𝑣𝑥) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓)]
) + 𝜓 (A7) 

𝜇𝑜𝑅 = 𝑡𝑎𝑛
−1(

[(|𝐿𝑟𝑒| × 𝑠𝑖𝑛(𝛼𝑟𝑒 + 𝜓) + 𝑣𝑟) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4)]

[(|𝐿𝑟𝑒| × 𝑐𝑜𝑠(𝛼𝑟𝑒 + 𝜓) + 𝑣𝑥) − ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓)]
) − 𝜓 (A8) 
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where |𝐿𝑟𝑒|, αre, |𝐿𝑓|, and αf in Eqs. (A1)-(A12) are: 

|𝐿𝑟𝑒| = √((𝑅𝑟𝑒І − 𝑅𝑟𝑒ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁)
2
+ ((𝑅𝑟𝑒І − 𝑅𝑟𝑒ІІ) × 𝑠𝑖𝑛( 𝛽))

2
 (A13) 

𝛼𝑟𝑒 = 𝑡𝑎𝑛
−1 (((𝑅𝑟𝑒І − 𝑅𝑟𝑒ІІ) × 𝑠𝑖𝑛( 𝛽))/((𝑅𝑟𝑒І − 𝑅𝑟𝑒ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁)) (A14) 

|𝐿𝑓| = √((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓)
2
+ ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4)

2
 (A15) 

𝛼𝑓 = 𝑡𝑎𝑛
−1 (((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4) / ((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓)) (A16) 

In addition to the verification with experimental and numerical results from the literature, the results obtained from the above formulas 

are also verified by comparing them with the CAD drawings (see Table A1 and Table A2). In Table A1 and Table A2, the displacements 

given to the inner ring and roller can be seen (the combined loadings Fr-γ and Fr-Fa in Table A1 and Table A2, respectively). The results 

obtained by substituting the inner ring local deformation vector (ur, ux, θ) and the roller deformation vector (vr, vx , ψ) into the Eqs. 

(A1)-(A12) are compared with the results obtained from the CAD drawings. While the units of linear displacements (ur, ux, vr, vx) in 

Table A1 and A2 are mm, the units of angular displacements (θ , ψ) are degrees (◦). Inner ring and roller movements are given as a 

representation and are higher than the nominal values. Additionally, Fig. A1 is presented as a representation of the displacements of 

ur=1, uz=-1, vr=0.5, vz=-0.5, θ=1, ψ=-0.5. 

 

Table A1. For the toroidal roller end (RreⅡ/ RreⅠ=0.01) and toroidal flange (RfⅡ/ RfⅠ=0.01), under Fr-γ combined loading, the results of 

roller end-flange deformation (δ), the angle of μ, and the distance of ζ against the inner ring and roller movements.  

 

ur=2, uz=-2, vr=1, 

 vz=-1, θ=2, ψ=-1 

ur=1, uz=-1, vr=0.5,  

vz=-0.5, θ=1, ψ=-0.5 

CAD Drawing Formula CAD Drawing  Formula 

δf-iR 0.6636 0.6636 0.3434 0.3434 

μiR -3.6280 -3.6280 -1.5535 -1.5535 

ζiR -90.5703 -90.5703 -211.2169 -211.2169 

휁𝑖𝑙 = −

(

 
 
 
(
[(|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 + 𝜃) − 𝑢𝑥) + 𝑣𝑥] 𝑐𝑜𝑠(𝜓)

+[(|𝐿𝑓| × 𝑠𝑖𝑛(𝛼𝑓 + 𝜃) − 𝑢𝑟) + 𝑣𝑟] 𝑠𝑖𝑛(𝜓)
) −

(
−[(|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 + 𝜃) − 𝑢𝑥) + 𝑣𝑥] 𝑠𝑖𝑛(𝜓)

+[(|𝐿𝑓| × 𝑠𝑖𝑛(𝛼𝑓 + 𝜃) − 𝑢𝑟) + 𝑣𝑟] 𝑐𝑜𝑠(𝜓)
)

𝑡𝑎𝑛( 𝜇𝑖𝑙)

)

 
 
 

 (A9) 

휁𝑖𝑅 = −

(

 
 
 
(
[(|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 − 𝜃) + 𝑢𝑥) − 𝑣𝑥] 𝑐𝑜𝑠(−𝜓)

+[(|𝐿𝑓| × 𝑠𝑖𝑛(𝛼𝑓 − 𝜃) − 𝑢𝑟) + 𝑣𝑟] 𝑠𝑖𝑛(−𝜓)
) −

(
−[(|𝐿𝑓| × 𝑐𝑜𝑠(𝛼𝑓 − 𝜃) + 𝑢𝑥) − 𝑣𝑥] 𝑠𝑖𝑛(−𝜓)

+[(|𝐿𝑓| × 𝑠𝑖𝑛(𝛼𝑓 − 𝜃) − 𝑢𝑟) + 𝑣𝑟] 𝑐𝑜𝑠(−𝜓)
)

𝑡𝑎𝑛( 𝜇𝑖𝑅)

)

 
 
 

 (A10) 

휁𝑜𝑙 = −

(

 
 
 
 
 

(
[((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓) + 𝑣𝑥] 𝑐𝑜𝑠(−𝜓)

+ [((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛(𝛽) + 𝑃𝑑/4) − 𝑣𝑟] 𝑠𝑖𝑛(−𝜓)
) −

(
−[((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓) + 𝑣𝑥] 𝑠𝑖𝑛(−𝜓)

+ [((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4) − 𝑣𝑟] 𝑐𝑜𝑠(−𝜓)
)

𝑡𝑎𝑛( 𝜇𝑜𝑙)

)

 
 
 
 
 

 (A11) 

휁𝑜𝑅 = −

(

 
 
 
 
 

(
[((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓) − 𝑣𝑥] 𝑐𝑜𝑠(𝜓)

+ [((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4) − 𝑣𝑟] 𝑠𝑖𝑛(𝜓)
) −

(
− [((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑐𝑜𝑠( 𝛽) − 휁 + 𝛥𝑓) − 𝑣𝑥] 𝑠𝑖𝑛(𝜓)

+ [((𝑅𝑟𝑒І + 𝑅𝑓ІІ) × 𝑠𝑖𝑛( 𝛽) + 𝑃𝑑/4) − 𝑣𝑟] 𝑐𝑜𝑠(𝜓)
)

𝑡𝑎𝑛( 𝜇𝑜𝑅)

)

 
 
 
 
 

 (A12) 
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ur=2, uz=-2, vr=1, 

 vz=-1, θ=2, ψ=-1 

ur=1, uz=-1, vr=0.5,  

vz=-0.5, θ=1, ψ=-0.5 

CAD Drawing Formula CAD Drawing Formula 

δf-ol 0.8994 0.8994 0.4521 0.4521 

μol -1.5859 -1.5859 -0.5386 -0.5386 

ζol -206.9026 -206.9026 -608.5968 -608.5968 

 

Table A2. For the toroidal roller end (RreⅡ/ RreⅠ=0.01) and toroidal flange (RfⅡ/ RfⅠ=0.01), under Fr-Fa combined loading, the results of 

roller end-flange deformation (δ), the angle of μ, and the distance of ζ against the inner ring and roller movements.  

 

ur=2, uz=2, vr=1,  

vz=1, θ=0, ψ=2 

ur=1, uz=1, vr=0.5,  

vz=0.5, θ=0, ψ=1 

CAD Drawing Formula CAD Drawing  Formula 

δf-il 0.7995 0.7995 0.4022 0.4022 

μil -2.5895 -2.5895 -1.0416 -1.0416 

ζil -126.8138 -126.8138 -314.8558 -314.8558 

δf-oR 0.7995 0.7995 0.4022 0.4022 

μoR -2.5895 -2.5895 -1.0416 -1.0416 

ζoR -126.8138 -126.8138 -314.8558 -314.8558 

 

 

Fig. A1. CAD drawing and measured values for the displacements of ur=1, uz=-1, vr=0.5, vz=-0.5, θ=1, ψ=-0.5.  

 

 


